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ABSTRACT

I
This thesis describes the results of an extensive measurement-based analysis of real error data

I
collected from a 7-machine DEC VaxCluster multicomputer system. In addition to evaluating

basic error and failure characteristics, we develop reward models to analyze the impact
system

of failures and errors on the system. The results show that, although, 98% of errors in the

shared resources recover, they result in 48% of all system failures. The analysis of rewards

shows that the expected reward rate for the VaxCluster decreases to 0.5 in 100 days for a 3-

out-of-7 model, which is well over a 100 times that for a 7-out-of-7 model. A comparison of

the reward rates for a range of k-out-of-n models indicates that the maximum increase in reward

rate (0.25) occurs in going from the 6-out-of-7 model to the 5-out-of-7 model. The analysis

also shows that software errors have the lowest reward (0.2 vs. 0.91 for network errors). The

i large loss in reward rate for software errors is due to the fact that a large proportion (94%) of

software errors lead to failure. In comparison, the high reward rate for network errors is due to
fast recovery from a majority of these errors( median recovery duration is 0 seconds).
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i 1. INTRODUCTION

This thesis describes the results of an extensive measurement-based analysis of real error

I data collected from a 7-machine DEC VaxCluster system at the NASA Ames Research Center.

i The measurements encompasses a period of about 8 months of continuous operation from
December 1987 to August 1988. The analysis evaluates basic system characteristics such as fie-

I quency breakdown of errors and failures, mean times between errors and failures and

effectiveness of error recovery. Analysis of reward models is performed to quantify the impact

I of failures for different k-out-of-n models of the VaxCluster. A comparison of these models is

I performed to estimate the impact of different VaxCluster configurations on the reward rate.

Reward models are also used to analyze the impact of different error types on each system.

I
The results show that shared resources (network and disks) are a major reliability

I bottleneck in the system. Although the system recovers from 98% of errors in the shared

resources, these result in 48% of all failures. This is due to the high frequency of errors (93%)

I in the shared resources. The average Mean Time Between Failures (163 hours) is about 100

I times the average Mean Time Betwecn Errors (1.6 hours). The study of recovery durations

indicates that CPU errors have the fastest recovery time (mean of 12 seconds) and I/O errors

I have the slowest recovery time (mean _ 400 seconds). Analysis of reboot data shows that

I about 30% of reboots occur in conjunction with multiple error events, although multiple error

events span only 0.8% of the measured duration. Only 24% of the these reboots lead to

I recovery.

I The analysis of rewards shows that the expected system reward rate decreases to 0.5 in

100 days for a 3-out-of-7 model, which is well over a 100 times that for a 7-out-of-7 model. A

I comparison of the reward rates for a range of k-out-of-n models indicates that the maximum

I increase in reward rate (0.25) occurs in going from the 6-out-of-7 model to the 5-out-of,7

!
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model. The analysis also shows that software errors have the lowest reward (0.2 vs. 0.9l for

network errors). The low reward rate for software errors is due to the fact that a large propor-

tion (94%) of software errors lead to failure. In comparison, the high reward rate for network

errors is due to fast recovery from a majority of these errors ( median recovery duration is 0

seconds).

The next section discusses related research. Chapter 2 introduces the measured system

and measurements made. Chapter 3 describes the error classification and the results of the prel-

imnary data analysis. Chap_cc4 develops reward models to analyze the impact of failures and

errors on the system. Chapter 5 highlights the major results of this study and makes suggestions

for future work.

1.1 Related Research

Analytical models for hardware failures have been extensively investigated in the literature

[6,7,16,17,23]. In many of these studies, the time between failures is usually assumed to be

exponentially distributed although time-dependent failure rates and graceful degradation have

been considered. Availability and pcrforrnability issues have been extensively studied in

[7,16,23]. An overview of numerical approaches for computation of instantaneous and cumula-

tive measures for Markov reward models is discussed in [18].

Measurement-based analyses of computer system failures have also evolved significantly

in the last decade. The preliminary research in this area was an analysis of system-wide failures

at the Stanford Linear Accelerator Computer Facility [2,10,11]. The analysis showed that the

average system failure rate correlated strongly with the average workload on the system. Similar

results based on measurements on the DEC systems were reported in [3]. The effect of workload

imposed stress on software were investigated in [12]. Later, systematic methods which used

1990014664-009
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error and usage measurements to model the impact of system activity on reliability were

developed [13]. In [15], it was shown that undetected software-related errors were commonly '_'.

,..

due to specification errors, implementation errors or logic errors. In [14], data from both IBM _.

and Cyber mainframes were used to develop a methodology for recognizing symptoms of per- _

sisting errors.

The analytical and the measurement-based techniques are brought together in [8] where a

joint resource-,asage/error/recovery model using error and resource usage data collected from anIBM system i_ constructed. The model provides detailed information on system behavior under

normal and error conditions. A significant result of this reliability/performability model is that a

semi-Markov process, as opposed to a Markov process, is better to model the system behaviour.
Most of the above studies have been on single machines. A study of a distributed system,

at this stage, would be valuable in furthering our understanding of failure behavior in large andcomplex configurati,_.n_s.The purpose of this thesis is to discuss the results of an extensive

I measurement-based analysis of real error data collected from a 7-machine DEC VaxCluster mul-

ticomputer system. The next section describes the Vax architecture with specific reference toerror detection, measurement and logging.

P
P
P
P
r
P
r
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2. MEASUREMENT ENVIRONMENT

The measured system is a seven machine VaxCluster, a distributed system consisting of 7

VAX-11 's and 4 mass storage controllers connected by the CI (Computer Interconnect) bus. An

intelligent hardware interface called the CI port connects each node (computer or controller) and

the CI bus. The CI bus is physically organized as a star topology, at the center of which is a

coupler connecting all nodes through radial CI paths. The key features of the VaxCluster are:

separate processors and memories connected by a message-oriented interconnect nmning

instances of the same copy of the distributed VAX/VMS operating system, shared physical

access to disk storage, and high-speed memory-to-memory block transfers between nodes [13].

Exceptions in the VaxC;aster

There are a number of methods to handle exceptions in a VaxCluster. Exceptions are trig-

gered by software consistency checks or by the hardware and detect both software and hardware

errors. There are three types of exceptions, namely, aborts, faults and traps. An abort is the

most severe form of an exception condition. When an instruction is aborted, the machine regis-

ters and memory may be left in an indeterminate state and hence it is not possible for recovery

to occur. Faults leave the machine registers and memory in a consistent state. Once the fault is

eliminated, the instruction may be restarted but correct results cannot be guaranteed. A trap is

the least severe form of exception. The machine registers and memory are consistent and the

address of the next instruction to execute is stored on the machine stack. The process can be

restarted with the same state as before the trap occurred.

Errors in the VaxCluster

The VAXfVMS operating system maintains a log of a variety of normal and abnormal

events including detailed error data. Errors are captured by the hardwaredetection circuits or by

1990014664-011
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r soflv,,_e consistency checks. Errors may originate in various locations including the d;sk sub-systems, channels, tape drives, network devices peripheral processors, central processor and

p main memory. Each time the system detects an error, the relevant information is recorded in a
system file called ERRORLOG. This study utilizes the ERRORLOG data between December 9,

1987 and August 16, 1988 on the seven machines in the VaxCluster. The machines Earth,

Europa, Jupiter, Leo, Mars, Mercury, and Saturn were operating continuously dunng the meas-urement period except for brief periods when the machines were brought down for repair or

preventive maintenance.

A sample of the fields logged by the system and used in thio,study is shown in Figure 2.1.
Each entry of the error log file contains considerable information on the nature of the error and

II includes the error ena'y number, the date and time of the entry, the system identification, the

II device or subsystem on which the error occurred, the contents of the device registers anddifferent levels of device dependent data pertaining to the error. The following sample of the

II error data shows some of the different error types logged by different machines 1.

I The data contained information on both "errors" and "failures". For the purpose of this

I study we deft,-, an error as a detection of an abnormailty in any one of the machines. If an

II error led to a _oss of service for that machine, it is defined as a failure. The system auto-reboot

log was used to identify failures. An auto reboot is an action taken by the system to reload the

console software in an attempt to recover from existing system problems. It causes an interrup-

II tion of service since no processing can be done during the time a reboot is in progress.

II For the purposes of this study, the errors were classified into the following five error

_1 classes according to the subsystems or devices on which they occurred.• Heretheentrynumbersate notconsecutive;the sampleis intendedto providea feel forthedifferenttypesaf

ero,sth,t lou

!'
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Entry SystemI'D LoggingTifre Subsystem Interpretation

62 Earth 1I-NOV-198715:41:32.64 I/O.HISDUA51: Diskdriveerror

139 Earth II-NOV-198717:39:17.15 CI,EARSPAA0: Path#0 wentfromgoodtobad

141 Earth 11-NOV-1987 17:39:17.17 CI, EARSPAA0: Softwarc is closing virtual circuit

200 Earth 12-NOV-1987 18:49:27.50 I/O, H3$MUAI: Tape drive error

2007 Earth 30-NOV-1987 14:58:13.89 BugCheck Unexpected system service exception

3260 Mercury 24-DEC-1987 04:54:52.06 Memory TR #2 Corrected memory error

3264 Mercury 24-DEC-1987 04:55:28.89 Memory, TR #2 Corrected memory error

1846 Europa 17JAN-1988 12:44:11.29 EugCheck Bad memory deallocation

11796 Man 7-FEB-1988 10:22:31.40 CPU, MBA Adapter power-down

10939 Jupiter I-APR-1988 09:57:39.40 Unknown Device

14209 Jupiter 16-MAY-1988 13:37:04.97 CPU. SBI Unexpected read data fault

Sample error log fields
Figure 2.1

1. CPU -- CPU related errors. Examples: "cache parity", "translation buffer parity", "SBI

(Synchronous Backplane Interconnect) fault";

2. Software -- software errors. Examples: "unexpected system service exception", "bad

memory deallocation request size or address", "kernel stack not valid";

3. I/O -- disk, drive, and controller crrors;

4. Network -- bus and port errors. Examples: "Software is losing virtual circuit", "Data cable

state changes from good to bad";

5. Memory -- memory ECC errors;

Any of the error classes can lead to automatic reboots of the system, which is counted as

downtime because no processing can be done when a reboot is in progress. The next section

discusses the processing of the error logs that was necessary to read the data.

1990014664-013
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r Data ProcessingThe statistical analysis package SAS [21] was used to read the error log files and process

r the data. SAS is a software system for data analysis that provides many statistical routines

r ranging from basic descriptive statistics to complex time series analysis.The error log fries were available in VMS backup binary format. The following steps had

p to be carried out for each of the seven errorlog files to convert the data to a format that could be

p processed on the IBM mainframe. First, the ANALYZE utility provided by VMS was used toconvert each of the seven errorlog files to ASCII format. The ASCII version of each file was

p approximately 200 Megabytes. Then, the headers from the ASCII files were stripped in order to

r have a form acceptable to SAS. Each of the seven files were converted to an EBCDIC format
and written to tape that could be read on an IBM mainframe. The next chapter presents results

of preliminary analyses and provides an understanding of the various error characteristics.

P
P
P
P
P
I
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3. SYSTEM AND ERROR CHARACTERIZATION

This chapter provides analysis and statistics that give a preliminary understanding of the

error behavior of the VaxCluster. Error coalescing is done to merge multiple records relating to

the same problem. Basic system characteristics such as frequency breakdown of errors and

fa,lures, mean times between errors and failures and error recovery are evaluated.

The results show that shared resources (network and disks) are a major reliability

bottleneck in the system. Although 98% of errors in the shared resources recover, they result in

48% of all system failures. This is due to the high frequency of errors (93%) in the shared

resources. The average Mean Time Between Failures (163 hours) is about 100 times the aver-

age Mean Time Between errors (1.6 hours). The study of recovery durations indicates that CPU

errors have the fastest recovery time (mean of 12 seconds) and I/O errors have the slowest

recovery time (mean of 400 seconds). Analysis of reboot data shows that about 30% of reboots

occur in conjunction with multiple error events, although multiple error events span only 0.8%

of the measured duration. Only 24% of the these reboots lead to recovery.

Error Breakdown

Recall that the error records wcrc divided into five error classes i.e., CPU, mem3ry, I/O,

network and software errors. The error frequency for each class is given in Table 3.1. The

table shows mat there is a wide variation in the errors across the machines. For :xample, over

20% of all legged errors occurred on Mercury, while Earth contributed only 8% of the errors.

Looking at the different error types, we see that I/O errors are dominant (nearly 80%); software

errors have the lowest frequency (less than 0.5%). We also see a wide variation in the number

of I/O and CPU errors recorded on each of the machines. Satum has over 14000 I/O errors

while Earth has about 5000. For CPU errors, the maximum frequency is on Earth (84) while

1990014664-015
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the minimum is on Leo (0).

P Error Events

p As with other error studies of this type [10,23], a single problem commonly led to many

p repeated error observations occurring in rapid succession. In order to ensure that the analysis is
not biased by repeated observations of the same problem, an algorithm that coalesces all error

entries which had the same error type and occurred within a 5 minute interval of each other was

p used. The coalesced errors represented by a single record was called an error event. Thus, anerror event represents the occurrence of one or more errors of the same type in rapid succession

and is defined by the number of errors in the event and by the time span of the event itself. The

p algorithm for forming the error events is shown below.

IF <time from previous error is less than or equal to 5 minutes>

AND <type of device affected> = <type of device affected in previous error>

AND <device unit number> = <device unit number in previous error>
THEN <fold error into event being built>
ELSE <start a new event>.

P
p Frequency of Error ClassesClass Earth Europa Jupiter Leo Mars Mercury Saturn Total Average %

C'PU 84 27 59 0 59 3 38 270 38 0.34

I/O 5525 9380 9113 7536 8152 8161 14122 61989 8855 79

Network 1133 1296 987 1356 1008 1255 1152 8187 1169 10.4

Memory 1 2 10 1311 0 6598 3 7925 1132 10

Software 35 _ 28 12 40 37 40 218 31 0.27

Total 6929 /822 10230 9272 10244 16066 15369 78932 [

% 8.7 13.7 12.96 12.97 11.74 20.35 19.47

Breakdown of raw errors
Table 3.1

P
p

1990014664-016
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Overall Frequency

Machine Raw % Events % %change

MERCURY 16066 20.35 4131 14.02 74.28

SATURN 15369 19.47 4130 14.01 73.12

EUROPA 10822 13.7 4141 14.05 61,73

LEO 10244 12.97 4439 15.06 56.88

JUPITER 10230 12.96 4207 14.28 58.87

MARS 9272 I1.74 4603 15.62 50.35

EARTH 6929 8.7 3809 12.92 45.02

All 78932 100 29460 1_ 62

Overall Frequency
Table 3.2

Table 3.2 highlights the extent to which the coalescing of errors reduces the data and com-

pensates for multiple recordings that bias the raw data. The table shows that there is a 62%

reduction in errors; the number of errors is reduced from approximately 79000 to 30000. The

raw error count is reduced by varying degrees on each machine, ranging from a high of 74% on

Mercury to a low of 45% on Earth. The relative contribution of each machine is between 13%

to 15% after coalescing as opposed to 9% to 20% for the raw (uncoalesed) data. It is clear that

the coalesced errors thus provide a bal:mccd insight into the error characteristics of the system.

Error Clusters

Class Raw % Events % %reduction

CPU 270 .34 166 .56 38.5

I/O 61989 79 23556 80.78 61.9

Network 8187 10.4 3676 12.60 55

Memory 7925 10 1555 5.33 80,3

Software 218 .27 206 .7 5.5

Error Clusters
Table 3.3

1990014664-017
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Table 3.3 shows the reduction due to coalescing for each of the error classes. A com-
parison with the raw error counts is also given. It can be seen that the major contribution is

from I/O errors that constitute 80% of the error events. The errors in the shared resources, I/O

errors and network errors, account for 93% of all events. Next we analyze the failures caused

I
by each of the error clases.

I Failure due to errors

I The number of failures that occurred is identified by the number of automatic system

i reboots. The number of failures that were caused by each error type is shown in Table 3.4. Of
the total of nearly 30000 error events, about 390 lead to failure i.e., (i.e., approximately I% of

I Thus 99% of the without reboot shut down.
events). errors recover or system Although

software events constitute only 0.7% of error events, about 94% of all software events led to

!
system failures. In comparison, 3.5% of the 166 CPU events lead to system failure.

p Table 3.4 also shows that about 2% of all the errors in the shared resources (I/O and net-

p work errors) led to failures. These, however, resulted in more than 48% of all failures. Thisindicates that although the shared resources are generally robust, i.e., the system is able to

P
p Number of FailuresClass % fail Number

p Software 94.4 195

CPU 3.5 6

I/O .5 117

I Network I
.6 73

Memory 0 0

Numbcr of failures
Table 3.4

1990014664-018
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recover from the vast majority of errors in them., they still constitute a major r_.liability

bottleneck simply due to their sheer numbers. So an improvement in the VAXcluster v_liability

will necessitate an even higher error coverage in lhe shared resources. This may require the

design of an ultra reliable network to reduce the raw error rate, not just the recoverability.

Time between errors and failures

The time between errors and failures statistics are given in Table 3.5. The average MTBF

is over 100 times the average MTBE (164/1.56). There is not a significant variation in the

MTBE statistics across the machines. The MTBF, however, varies considerably across the

machines. The largest one (278 hours for Leo) is about 5 times the smallest one (52 hours for

Earth). The maximum error free time periods vary from 1.32 days to 24 days for the seven

machines, whereas the maximum time interval in which there was no failure varies from 35 to

61 days across the seven machines.

Table 3.6 shows the relationship between network and I/O errors. In looking down the

two columns at the maximum time between network and I/O errors for each of the seven

machines, we see that a strong correlation exists. The longer a machine functions without a net-

work error, the longer it functions without an I/O error.

Error Type Earth Europa Jupiter l,eo Mars Mercury Satum Average

Mean TBE (hour) 1.47 1,71 1.68 1,55 1,31 1,59 1,62 1.56

Mean TBF (hour) 52.1 137.2 153.6 277.9 203.2 166.7 156.8 163.9

Max TBE (day) 11.75 11.84 1.32 1.56 4.39 24.07 2.52 8.21
Max TBF (day) 36.63 34,9i 48.76 47,04 34,95 43,97 61.23 43.93

Time bc _ veen crrors and failures
Table 3.5

1990014664-019
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I/O andnetwork errors el'BE in hours)

Machine Net(Max TBE) IJO (Max TBE)

JUP 31.60 I 19.52

LEO 41.6 137.2

Sat 60.5 156.4

Mars 105.4 180.2

Earth 285.4 306

Europa 285.4 308.4

Mercmy 577 597

I/O and network errors TBE in hours
Table 3.6

Error recovery duration and densities

The span of an error event provides information on the time taken by the system to

recover from a particular error. The number of points that are found in each event also provides

p a measure of the density of error events. The rank statistics of the spans (error recovery dura-tion) and density of events formed for each error type is given for each machine in Appendix

B. The tables indicate that the maximum v,'dues of the spans are far greater than their

corresponding means. This indicates that recovery is instantaneous in most cases, but there are
a few cases with large recovery times. For example, the maximum span of I/O errors (6532

_ seconds) is approximately sixteen times the value of the mean (397 seconds); the span of 75%of CPU errors is zero seccnds (instantaneous recovery).

P
p Table 3.7 shows the mean durations of the events for the different error types. The data

shows ,.t_atthe fastest recovery is for CPU errors (12 seconds) and the slowest recovery is for

r IiO errors (400 seconds). Table 3.7 also shows the mean densities (number of points in a event)
for the different error types. It is seen that I/O events contain the maximum number of points

P
r"
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Cluster Statistics

Cluster Means Largest Clusters
Duration Duration Points

Class Points
(insees.) (insees.)

CPU 12,38 3.85 288 28

T/O 397.18 50.77 6532 1111
Network 50.26 2.48 1179 30

Memory 0 1.5 0 12
Software 0 1.05 0 2

Ouster Statistics
Table 3.7

(50) and that network errors contain the minimum number of points (2). Clearly the overheads

due to redundant detection and logging of the same error is highest in the case of I/0 errors.

Restriction of multiple recordings of I/O is likely to improve performance. Now that we have

studied recovery from error events, we proceed next to study groups of error events that lead to

multiple error events in the system.

Multiple error events

The study of error events providcd insight into the ocurrance and recovery of the various

errors in the VaxCluster. In this section we study error events occurring very close to each

other and thereby resulting in high internal error rates in the system. Error events that occur

simultaneously or in rapid succession (less than five minutes apart) were grouped into multiple

error events. Such multiple error events can invoke different recovery mechanisms in succes-

sion and hence may !.mpose considerable overhead on the system.

About 4000 (14.5%) error events fall within multiple error events. The total holding time

of multiple crmr events is 44 hours (0.8% of the total measurement period). Table 3.8 shows

the percentage of error events of each type that fall in:_ multiple error events. It is seen that
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l "30% of system rebootsoccurredin periodswith multipleerrorevents (i.e., among errorevents

I that lasted for a total of 0.8% of the total measurementperiod). A significant proportionof net-

1 work errors (36%) and CPU errors (27%) are multiple error events. Of all the I/O error events

1 (which contributeover 80% of all error events),only 11% are multipleerrors.
Table 3.9 highlights the recovery characteristicsof multipleerror events and reboots. We

i l see fromTable 3.9 that multiplememoryerrors have highest recovery rate (50%) and lead to no

I failures. Multiple software errorshave the lowest recoveryrate (9%) and the highest failurerate(91%). Given the severity of softwareerrors (94% of all software errors lead to failure), this is

IS not surprising.

I It is seen fron Table 3.9 that 37%of network errors and 27% of I/O errors recover in the

1 presenceof multipleerrors. In comparison,the overall recovery rate for network and I/O errorevents is high (98% for network and 99% for i/O). The 3.7% of multiple I/O errors that lead to

ii failure account for 85% of all failures caused by I/O errors. The 4.9% of multiple network

I Muluple Error Events MuhiFle Erm¢Event Recovery

F.nortype Pen:crease Enu¢type Recovery Failure

i Network 36% Memory 50% 030'$ Netvn_t 37% 4.9%

CPU 27% I/0 27% 3.7%

i Sohwam 20% Reboo( 24%Memmy 11.5% CPU 13% 13%

I/0 I !.4% Software 9% 91%

i MultipleErrorEvents Multiple ErrorEventRecoveryTable 3.8 Table 3.9
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errors that lead to failures account for 88% of all system failures caused by network errors.

In studying the recovery characteristics of CPU errors, we see that 13% of multiple CPU

errors lead to recovery and 13% lead to failure. All system failures caused by CPU errors were

caused by multiple CPU errors. Only 24% of the reboots that were caused by multiple error

events lead to recovery, providing furthur evidence that recovery from multiple errors is com-

plex and frequently unsuccessful.

This chapter studied error events for each of the error classes and failures caused by some

of the error events. Recovery durations were quantified and compared. Multiple error events

were studied. We saw specific modes of propagation of errors. The next chapter deals with the

impact of errors on the performance of the VaxCluster.

I
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4. REWARD MODELING AND ANALYSIS

This chapter consists of two sections. In the first section reward models are developed to

analyze the impact of failures for different k-out-of-n configurations of the VaxCluster. A corn-

parison of these models is performed to estimate the impact of different VaxCluster
configurations on the reward rate. In the second section a reward model is developed to analyze

the impact of different error types on each system.

The analysis of rewards shows that the expected system reward rate decreases to 0.5 in
100 days for a 3-out-of-7 model, which is well over a 100 times that for a 7-out-of-7 model. A

comparison of the reward rates for a range of k-out-of-n models indicates that the maximum

increase in reward rate (0.25) occurs in going from the 6-out-of-7 model to the 5-out-of-7
model. The analysis also shows that software errors have the lowest reward (0.2 vs. 0.91 for

network errors). The large loss in reward for software errors is due to the fact that a large pro-

portion (94%) of software errors lead to failure. In comparison, the high reward rate for net-
work errors is due to the fast recovery from a majority of these errors ( median recovery dura-

tion is 0 seconds).

Performability of the VaxCiuster based on failures of nodes.

Failure of one or more constituent nodes can cause a significant degradation in a distri-

buted system. When a node in the VaxCluster fails, it exits from the VaxCluster and thereby

the number of machines available for processing decreases. In order to investigate the effect of

the failure of different nodes, a range of k-out-of-n models for the VaxCluster were analyzed. A

k-out-of-n system functions if and only if at least k of the n components of it are functioning

[20]. In this analysis we considered k-out-of-n models for for k_ [3,7] and n=7, since the failure

data had no more than five simultaneous failures.
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Failure modeling

Initially, a Markov model to depict the different failures states of the V_Cluster was con-

structed. The failure model neglects all non-failure errorevents. We define Fi tObe the state in

which i machines ilave failed. Thus, Fo represents the state where no machine has failed ,and,

F_ represents the state that one machine machine has failed, and so on. At any time the Vax-

Cluster is in one of the 6 states (Fo, F1, F2.... Fs). Since there were no instances of six or

seven joint failures states F6 and F7 do not exist.

The transition probabilities for the defined 6-star_ model were then calculated from the

measured data. Given that the system is in state Si, the probability P_j that it will go to state

Fj is calculated as follows:

Pid - observed number of transitionsfrom state_Fito stateFjooservea numoer o.t iranstltOn$ out o] Slale 1_i

Table 4.1 shows the measured transition probability matrix for the model. We see from Table

4.1, that, given multiple failures, the chances of additional failures is significant For example,

the transition probability from F3 to F4 is 0.53, and transition probability from F4 to F5 is 0.31.

State F0 F1 F2 F3 F4 F5

F0 0.000 0.95 0.04 0.01 0.000 0.000

FI 0.83 0.000 0.14 0.03 0.000 0.000

F2 0.35 0.5 0.000 0.15 0.000 0.000

F3 0.900 0.12 0.35 0.000 0.53 0.000

F,l 0.000 0.000 0.06 0.63 0.000 0.31

F5 0.000 0.000 0.000 0.000 1.000 0.000

Transition Probability for the Failure Model
Table 4.1.
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P
State F0 F1 F2 F3 F4 F5

Mean HT (in rains.) 1523.89 44.86 6.96 4.65 18.92 13.3.5

Total HT (hour) 5613.1 183.2 7.2 1.32 4.1 8.9

I tee. Prob. 0.964 .031 .001 .0002 .0007 .0015

Holding Time & Occupancy Probability for the Failure Model

Table 4,2

p The mean holding time, the total holding time, and the occupancy probability for eachstate of the failure model are shown in Table 4.2. The ",_ghest failure state, Fs, has the longest

mean holding time. This indicates that when 5 machines failed, the longest time was needed by

the system to recover or repair. The occupancy probability provides strong evidence that multi-pie failures in high states are related. For example, the measured occupancy probabiilty of F5 is

p 0.0015, but the probability under the independent case is approximately 21x0.0065_ which is

about 6xl06 times higher (where 0.0065 is the average failure probability of the sevenmachines). Even for F2 where the difference between the two probabilities (in the real case and

p the independent case) is the smallest among all multiple failure states, the measured occupancy

probability is still seven times that for the independent case.

r Reward for the Failure ModelTo investigate the impact of failures, a reward rate is defined for the failure model. For

p every machine that is functioning, a reward of 1/7 is awarded. When j machines fuoction, a

p reward of j/7 is awarded. Thus, in the normal (non-failure) state Fo, the reward rate is 7/7(equalling 1) because all seven machines are functioning. Similarly, when six machines are

r functioning, a reward of 6/7 is awarded; and sc on until a reward 3,,'7is awarded when only

of

r three machines are functioning. In our model, the following five cases _re considered:

r

1990014664-026



20

Case 1 (impact oE one or more failures): In the first case, referred to as ." 7-Out-of-7 model, we

assume that every machine is critical to system operation. Thus, the whole VAXcluster's reward

rate goes to zero as soon as a single failure occurs. This gives a worst case estimate of the sys-

tem l__,ard. The reward rate for state i, Fi, is then defined as

1 ifi=Ori = 0 i_/ ;_0"

In order to examine the impact of any machines's failure on the VaxCluster, we make F_, Fz,

F3, F4, Fs absorbing states.

Case 2 (impact of two or more failures): In the second case, referred to as a 6-Out-of-7 model,

we calc_date the reward characteristic based on the assumption that at least six machines must

be fully operating for the system to do any useful work. In order to examine the impact of the

failure of two machines on the VaxCluster, we make F2, F3, F,_, Fs absorbing. When all 7

machine are functional, the reward rate is 1. When any six machines are functional, the reward

rate is 6/7. When less than six machines are functional, the reward rate is 0.

Case 3 (impact of 3 or more failures): In case 3, referred to as a 5-out-of-7 model, we examine

the impact of the failure of three machines on the VaxCluster by making F3, F4, F5 absorbing.

Reward rates of 1, 6/7 or 5/'7, are assigned for 7, 6 or 5 functional machines Otherwise the

reward rate is set to 0.

Case 4 (impact of 4 or more failures): In case 4, referred to as a 4-out-of-7 model, we examine

the impact of the failure of four machines on the VaxCluster by making. F4, F5 absorbing.

Reward rates of 1, 6/7, 5/7 or 4/7 are assigned if 7, 6, 5 or 4 functional machines respectively.

Otherwise the reward rate is set to 0.

Case 5 (impact of five failures): In case five, referred to as a 3-Out-of-7 model, we cal,-,'!ate the
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reward characteristics based on the assumption that at least three machines must be fully operat-

ing for the system to do any useful work. F5 is made the absorbing state. If the number of fail-

ing machines is less than five, the system is still considered working with a degraded reward

rate. Recall that the worst failure situation was five machine's simultaneous failures, so this

definition gives a best estimate of the system reward. Under this consideration, the reward rate

of state i, Fi, is defined as

ri= j/'/ = 1-i/7.

where i = 7 -j,

j being the number of functioning machines; and i being the number o/=failed machines. (This

is the general case common to cases 1-5).

As shown in [18] and [8], given a time _ within the time domain considered, the system

reward rate, R(0, can be expressed as

R(t) = {ri I system is in state i at time t}.

Therefore the expected system reward rate at time t can be evaluated as

EtR (/)1 = ]_ ripi(t ), , d,

were pi is the probability of the system being in state i at time t. The system accumulated

reward by time t, A(t), can be derived from

a (t) = _tR(x)d.x .

Therefore the expected system accumulated reward by time t can be computed by

[a(t)] = _t]_r,rlpi (x)dx.E

The performability analysis was carried out using SHARPE (Symbolic Hierarchical

Automated Reliability and Performance Evaluator). SHARPE [22] is a modeling tool

developed at Duke University that provides several model types ranging from reliability block

diagrams to complex Markov models. It allows the the user to construct and analyze
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performance, reliability and availability models. SHARPE was used to calculate the expected

reward rate.

The plots of the expected reward rate vs. time for each of the above five cases are shown

in Figure 4.12. A comparison of the different k-out-of-7 models is done to estimate the impact

of diffe_ent VaxCluster configurations on the rewards characteristics 3. We look at the time

taken to reach a fixed reward rate (0.5 in this case) by each of the models. For example, the

time taken to reach an expected reward rate of 0.5 is 21 hours for the 7-out-of-7 model, Looking

at the entire range of models, it is seen that maximum increase in time taken to reach a reward

rate of 0.5 occurs in going from the 6-out-of-7 model to the 5-out-of-7 model (3 days vs. 25

days).

,-,. L1-- --1 1-- 1
0.9- '.. -0.9 0.9- 0.9
o.8-,- -o.8 o.8- ';-.'_.. I-o.8

_p,c- 0.7-\-. -0.7 F,p_, 0.7- ','.'_ ,, i-07

0,_ _0., o5_ , .
Reward 0.4-- ""'.. --0.4 Reward 0.4-- "--• "". _. _-0.40.3-- --0.3 0.3-- "_.. "'.....[-.0.3

_1 o.2- "'... - 0.2 0.2- - _r,..... ' '..[,-.0.2
0.1- "........ -o.1 o.1- "---t-oA

t, o I I l ',0 o I I I | 0
0 15 5 7.5 10 0 25 50 75 100

Tune(indayt) Ttme(in days)

ExpectedRewardRates for k-out-of-n models
Figure 4.1

2 Two separate plots are shown because the time scales vary and we cannot make a comparison by plotting all
the curveson the samegraph.

Note that the und_lying assumption is that the 3-out.of-7 model gives the best estimate of system reward,
and that the 2-out-of-7 and l-out-of-7 models are not considered.)
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I11 Next a comparison between the different k-out-of-n models is made by observing thechange in reward at a fixed reference time. We choose 50 days as the reference point. (Note

that the reward rate for the 7-out-of-7 model and 6-out-of-7 model has stabilized in 50 days and
so we use their steady state values in the comparison.) For example, after 50 days of operation,

_11 the expected reward rate is .65 in the 3-out-of-7 model. Looking at the entire range of models,

it is seen that the maximum increase in reward rate (.25) occurs in going from the 6-out-of-7model to the 7-out-of-7 model (.04 to .29).

As seen from the holding time in state Fo in Table 4.2, the VaxCluster functions in its full

configuration (7-out-of-7) about 96 % of the time. Therefore, the loss of nodes in the VaxClus-

ter happens less than 5% of the time. However, the change in reward characteristics observeu
above serves to emphasise the fact that fewer nodes in the VaxCluster result in dramatic loss of

work since repair times are not insignificant. The next section uses reward models to analyzethe impact of different error types on each system.

Performance Loss in the VaxCluster due to errors

l_ The markov model to describe the error behavior of each system is defined somewhat

differently than for the failure mode. Seven states are defined: normal operation, CPU errors,

memory errors, software errors, I/O errors, network errors, and system failure. Thus, each sys-

tem is modeled as a seven-state Markov process. To obtain a measure of the useful work done

by the system operating under errror conditions, a reward is defined for each state and the

expected reward rate is calculated.

Reward for the error model

In assigniag rewards "o each of the error states, we note that when the system enters an

error state it may stay there for a measurably finite duration depending on the time span of the

.
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error event. During an error event, the system goes into repeated error-recovery cycles until the

error vanishes and the loss of work is proportional to the error density (number of errors per

unit time) in the current state. The higher the error density, the higher the recovery overhead

and the lower the performance. Thus error density is one of the parameters that influences the

system performance and is incorporated in the reward rate rl as discussed below.

Following the reward structure used in [8], we define a reward rate r, per unit time for

each state i in the model as follows:

si if i E Slvk.,)Sfsi + ei

r_= 0 if/ eSR '

where si and ri are the service rate and the error rate in state i respectively. Thus one unit of

reward is given for each unit of time that the process stays in the normal state SN. The penalty

paid depends on the number of errors generated by an error event. With an increasing number

of errors the penalty per unit time increases, and accordingly, the reward rate decreases. Zero

reward is assigned to recovery states. This is due to the fact that during the recovery process

the system does not contribute any useful work toward the system performance besides recover-

ing from an error.

The expected reward rate E[X(t)] can be evaluated as:

E[X(t)] = _ pi(t)ri .

where pi(t) is the probability of occupying state i at time t.

SHARPE was used to carry out the reward analysis and calculate the expected reward

rates. The impact of a specific error type on the expected reward is evaluated by assigning the

specific state to be an absorption state. Therefore, the foUowing cases are considered:

Case 1) with failure as the absorbing state.

Case 2) with CPU and failure as the absorbing states.
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I Case 3) with software and failure as the absorbing state.
Case 4) with memory and failure as the absorbing state.

I I Case 5) with network and failure as the absorbing state.
Case 6) with I/O and failure as the absorbing state.

II In case 1 all errors are recovered from. In case 2 we discontinue recovering from CPU

II errors and therefore expect to measure the impact on the reward for a CPU error. In case 3 we

II recover from CPU errors but stop recovery from software errors. Thus we measure the impact
on the reward for a software error. Similarly in case ,_, 5, and 6 we measure the impact due to

II each °f mem°ry' netw°rk and I/0 ermrs respectively _'Yst°pping rec°very in tum from each °f

i these states.
As an example, the plots for expected reward r_t_ du,, ,o the error states in Mars are

I

I shown in Figure 4.2. It is clear that the fastest decrease in reward rate is for software errors. To

i illustrate this, we look at the time taken by the reward rate of software and CPU errors to
decrease to 0.7. It is seen that the expected reward rate decreases to 0.7 in 7 days of operation

I for software errors'ar_ in 16 days of operation for CPU errors. The reward characteristics for

i network and I/O errors are considerably different. Taking 0.95 as a reference point, the
expected reward rate decreases to this value in 37 minutes for I/O errors and in 96 minutes for

I network errors. The piots of the expected rates error states on
reward for each of the all the

machines are shown in Appendix C.

||
Table 4.3 indicates the expected reward values for each error type on each of the machines

and also the Average of the Steady State Values (ASSV) of each error type for each machine.

The CPU, memory and software values an; shown for 30 days of operation and the network and

I/O values are shown for 100 minutes of operation (because the reward rates for I/O and

!1 ' The reward rate of I/O and network errors does not decrease to 0.7.

1'
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Expected Reward Rate for Mars.

Figure 4.2

Expected Reward

CPU Memory Software I/O Network ASSV

EARTH .52 .99 .2 .86 .91 .69

EUROPA .47 .99 .25 .82 .93 .69

JUPITER .4 .97 .23 .82 .94 .67

LEO 1 .4 .37 .848 .9 .7

MARS .63 1 .12 .863 .94 .71

MERCURY .97 .21 .14 .76 .91 .59

SATURN .44 .99 .1 .70 .86 .61

Average .54 .792 .20 .81 ,912

Expected Reward Rate
Table 4.3

network errors reach steady state values in 100 m:,nutes).

Comparing the average expected reward rates (shown in Table 4.3), we see that the reward

rate due to software errors is the lowest (0.2) and the average expected reward rate due to net-
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p Figure 4.3

p work errors is the highest (.91). The large loss in reward for software errors is due to the fact

p that a large proportion of software errors (94%) lead to failure. In comparison, the high rewardrate for network errors is due to fast recovery from a majority of these errors (median recovery

p duration is 0 seconds).

F Comparing I/O and network errors (from Table 4.3), we find that the average expectedreward rate of I/O errors (.81) is ten points lower thaa the average expected reward rate for net-

|

•
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work errors (.91), although a lesser proportion of I/O errors (0.5%) lead to failure (vs. 1.6% for

network errors). The reason for the lower reward for I/O errors is due to their large frequencies

(80% of all errors are I/0 errors vs. 12% for network errors) and longer recovery times (median

recovery duration is 75 seconds for I/O errors and 0 seconds for network errors).

The average steady state values shown in Table 4.3 indicates close similarity for 5

machines (between .69 and .71). Therefore the average loss of work due to error states :s com-

parable for these five machines. The average steady state values for Mercury and Satum are

about ten points lower than for the other five systems because of the large frequencies of their

recoverable memory and I/O errors respectively. We see here that large frequencies of errors

cause measurable loss in reward.

Figure 4.3 shows the variation in expected reward rate across machines for each error type.

There is a significant variation in reward for each error type across the machines. The max-

imum variation is for rewards to CPU errors where the steady state values range from .3 to 1.

The minh_,um variation is for rewards to network errors where the steady state values range

from .88 to .92. This is I_ecause network errors affect all machines. Rewards for software

errors vary from a value as low as .05 to .29.
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5. CONCLUSIONS

In this thesis, the results of an extensive measurement-based analysis of real error data col-

lected from a 7 machine VaxClus'er multi-computer system was discussed. System error and

failure characteristics were evaluated. Analysis of reward models was performed to quantify the

impact of failures for different k-out-of-n models of the VaxCluster and to estimate the impact

of different VaxCluster configurations on the reward rate. Reward models were also used to

analyze the impact of different error types on each system.

The error entries were divided into 5 error classes comprising CPU, software, memory, I/O

and network errors. It was seen that I/O and network errors constituted 94% of the total errors.

Approximately 1% of errors led to failure; the system recovered from 99% of the errors without

reboots or system shut down. About 94% of all software errors led to system failures. While

only about 2% of all the errors in the shared resources (I/O and network errors) led to failures,

they resulted in more than 48% of all failures. This indicates that although the system was able

to recover from the vast majority of errors in the shared resources, they still constituted a major

reliability bottleneck simply due to thcir large frequencies. Multiple error events that occurred

in periods of high internal error rates in the system led to 30% of system reboot_ although the

multiple error events spanned only 0.8% of the measured duration.

The analysis of rewards showed that the expected system reward rate decreased to 0.5 on

100 days of operation for the 3-out-of-7 model, which was well over a 100 times that for the 7-

out-of-7 model. A comparison of the reward rates for a range of k-out-of-n models indicated

that the maximum increase in reward rate (0.25) occured in going from the 6-out-of-7 model to

the 5-out-of-7 model. A comparison of the reward rates for the various error clsses showed that

software errors had the lowest reward (0.2) due to the fact that a large proportion (94%) of

b them led to system failures. Network errors had the highest reward (0.91) due to their fast
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recovery times (median recovery duration was 0 seconds).

Suggestions for future research

It would be very valuable to investigate other multi-computer systems in a similar fashion

so that a wide range of results on the reliability and performance of computer systems is avail-

able. A second extension of this work is in the area of on-line diagnosis. Given the vast

amount of data, it would be useful to implement methods to use past error data for on-line

analysis and failure diagnosis.
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APPENDIX A

MERCURY - Errors JUPITER - Errors

Class Raw % Class Raw %

Reboot 12 .0007 Reboot 33 .003

CPU 3 .0001 CPU 59 .005

I/O 8161 50.79 I/O 9113 89.08

Network 1255 7.81 Network 987 9.6

Memory 6598 41.06 Memory 10 .0009

Software [ 37 .002 Software 28 .002

SATURN - Errors MARS - Errors

Class Raw % Class Raw %

Reboot 14 .00(O Reboot 13 .001

CPU 38 .002 CPU 59 .006

I/O 14122 91.88 I/O 8152 87.92

Network 1152 7.4 Network 1008 10.87

Memory 3 .0001 Memory 0 0
Software 40 .002 Software 40 .004

EUROPA - Errors EARTH - Errors

Class Raw % Class Raw %

Reboot 91 .00__ Reboot 151 2.1
CPU 27 .002 CPU 84 1.2

I/O 9380 86.6 I/O 5525 79.7

Network 1296 11.9 Network 1133 16.3

Memory 2 .0001 Memory 1 .0001

Soft_'.'are 26 .002 Software [ 5
g

LEO - Errors

Class Paw %

Reboot 29 .(X)2

CPU 0 0

I/O 7536 73.5

Network 1356 13.2

Memory 1311 12.7
Software 12 .001

Breakdownof Errors
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APPENDIX B

Time Span of ErrorClus-'rs (in Seconds) - MERCURY Number of _oint_in a Cluster - SATURN

Ret.x._t CPU i Memo_ Reboot CPU Memor/Mean 0 0 0 Mean 1.07 11 1

Mitt. 0 0 0 Man. t 1 I.

25% 0 0 0 25% 1 1.75 1

Median 0 0 0 Median 1 9.5 1

75% 0 0 0 75% 1 19.?L 1

Maximum 0 0 0 M_dmtrm 2 28 1

I/O Network Software I/O Network Software

Meam 422.88 28.85 0 Mean 184.24 2.49 1.1

Man. 0 0 0 MAn. 1 1 1

25% 0 0 0 25% 1 1 1

Medim 8 0 0 Median 17 2 1

75% 812 0 0 75% 301 3 1

Maaimum 2943 638 ] 0 Maximum 1111 22 2

Number of points in a Cluster - MERCURY Tune Span of ErrorClusten (in Seconds) - EUROPA
Reboct CPU Men_or_. Reboot CPU Memov/

Mean 1.16 2 3.50 Mean 24.37 32.55 0

Min. 1 1 1 Min. 0 0 0

25% 1 1 2 25% 0 0 0

Median 1 2 4 Median 0 0 0

75% 1 3 5 75% 0 0 0

Maximum 2 3 12 _i _ximum 305 233 0

I/O Network Software I/O Network Software

Mean 81.47 2.52 1.18 Mean 398.96 70.36 0

Man. 1 1 1 Man. 0 0 0

25% 1 1 1 25% 0 0 0

Median 4 2 ! ;Median 48 0 0

75% 92 3 I 75% 516 0 0

Maximum 784 14 2 Maximut 1 5419 1325 0

Tune Span of EIror Ousters fin Seconds) - SATURN Number of _oints in a Cluster - EUROPA

Reboot CPU Memo_ Reboot CPU Memor),Mean 0 0 0 Mean 1.16 5.18 1

Man. 0 0 0 Man. 1 1 l

25% 0 0 0 25% 1 1 1

Median 0 0 0 Median 1 4 1

75% 0 0 0 75% 1 8 1
m

Maximum 0 0 0 Maximum 4 14 1

l/O Network Software I/O Network Software

Mean 980.30 48.69 0 Mean 34.81 2.52 1

Man. 0 0 0 Man. 1 1 1

25% 0 0 0 25% 1 1 I

Median 439.5 0 0 Median 3 1 1

75% 1460 0 0 75% 25 2 1

Maximum 6352 1179 0 Maximum 435 30 1
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Time Span of Error Clusters (in Seconds)- LEO Number of _oints m a Cluster - IUPITER

Reboo¢ CPU Memory Re.boot CPU Memory
Mean 0 0 0 Mean 1 2.52 1

Min. 0 0 0 Min. 1 1 1

II 25% 0 0 0 25% 1 1 1

Median 0 0 0 Median 1 2 1

75% 0 0 0 75% 1 3 1

Maximum 0 0 0 Maximum 1 9 1

II DO Network Software I/O Network Software

Mean 148.98 56.78 0 Mean 29.38 2.24 1

Min. 0 0 0 Min. 1 1 1

['1 25% 0 0 0 25% 1 1 1

Median 0 0 0 Median 3 2 1

75% 40.75 1 0 75% 23 2 1

Maximum 3759 1179 0 Maxinmm 359 22 ] 1

II Number of points in a Cluster- LEO Time Span of Error Clusters (in Seconds)- MARS

ll Reboot CPU Me:nov/ Re.boot CPU Memory

Mean 1.2 0 2 Mean 0 .338 0

Min. l 0 l Min. 0 0 0

25% 1 0 1 25% 0 0 0

II Median 1 0 2 Median 0 0 0

75% 1 0 3 75% 0 0 0

Maximum 2 0 3 Maximum 0 16 0

!_ IK) Network Software I/O Network Software

Meam 5.79 3.24 ].08 Mean 231.74 54.35 0

Min. ! 1 1 Min. 0 0 0

25% 1 1 1 25% 0 0 0

II Median 2 2 I Median 0 0 0

75% 3 4 1 75% 229 0 0

Maximum 164 22 2 Maximum 3760 1179 0

iI Time Span of Error Clusters {in Seconds) - JUPITER Number of points in a Cluster - MARS

Reboot CPU Memory Reboot CPU Memory

I| -
Mean 0 23.7 0 Mean 1 1.37 0

Min. 0 0 0 Min. 1 1 0

25% 0 0 0 25% 1 1 0

il Median 0 0 0 Median I I 0

75% 0 18 0 75% 1 I 0

Maximum 0 288 0 Maximum I 5 0

I/O Network Software I/O Network Software

II Mean 319.19 52,79 0 Mean 9.59 2.24 1

Min. 0 0 0 Min. 1 1 1

25_, 0 0 0 25_ 1 1 l

1 Median 30 0 0 Median 2 2 1

75% 445 0 0 75% 7 2 1

Maximum 5413 1178 0 Maximum 164 22 1

II
||

i'
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Time Span of Error Clusters (in Seconds) - EARTH
Reboot CPU Memory

Mean 24.53 5.35 0

Min. 0 0 0

25% 0 0 ff

Median 0 0 0

75% 0 0 0

Maximum 357 188 0

I/O Network Software

M(:an 278.24 40.05 0

Mh:, 0 0 0

25% 0 0 0

Median 0 0 0

75% 153 0 0

Maximum 5413 965 0

Number of points in a Cluster - EARTH

Reboot CPU Memory
Mean I. 18 1.08 1

Min. 1 1 1

25% 1 1 1

Median 1 l 1

75% 1 l 1

Maximum 4 3 1

I/O Network Software

Mean 10.13 2.16 l

Min. 1 l 1

25% 1 1 1

Median 1 1 1 ' J)

75% 4 2 1

Maximum 241 25 1

Cluster Statistics
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